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Abstract 

We prove in the context of quantum groups at even roots of unity that a Turaev-Viro type invariant 
of a three-dimensional cobordism A4 equals the tensor product of the Reshetikhin-Turaev invariants 
of M and M*, where the latter denotes M with orientation reversed. 
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1. Introduction 

According to [At] a three-dimensional topological quantum field theory (TQFT) asso- 
ciates a finite-dimensional vector space VC to each compact closed oriented two-dimensional 
surface C, and a vector (partition function) Z(M) E VE to each compact oriented three- 
dimensional manifold M with boundary _E, satisfying a certain set of axioms. Of particular 
relevance for the following discussion are the following: (1) V,p is the dual space of Vz 
for each surface E, where ,?Y* denotes C with orientation reversed; (2) given an orienta- 
tion preserving diffeomorphism f : C -+ C’ between oriented surfaces, there exists an 
isomorphism U(f) : Vx -+ V,r fulfilling U (ft A) = U (ft ) U (f2) for any pair of diffeo- 
morphisms that can be composed; and (3) if M is obtained by gluing two 3-manifolds Ml and 
M2 along C E tlM1 and ,FC* E aM2 then Z(M) is obtained by contracting Z(MI) @ Z(M2) 
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with respect to V,JJ. In addition, the vector space associated to the empty surface is assumed 
to be the complex numbers, and if E is the disjoint union of two surfaces Ct and & then 
VC = VC, 63 VC,. In particular, if M is a closed manifold, Z(M) is a complex number 
which is a topological invariant of M. 

Alternatively, the gluing property (3) can be reformulated in terms of operators as follows. 
Viewing MI and M2 as cobordisms with aM1 = Cl U .E and aM2 = JC’* U ,X2 we can 
correspondingly consider the state sums as operators Z(M1) : Vi, + VC and Z(M2) : 
Vp + VC, by (1). Given an orientation preserving diffeomorphism f : ,E -+ ,E’ and 
letting M denote the manifold obtained by gluing MI to M2 along f, property (3) is 
equivalent to 

Z(M) = Z(MdU(f)Z(Ml). (1.1) 

Note that the symmetry of the gluing w.r.t. Ml and M2 requires that 

u(f*) = (u(f)‘)-‘, (1.2) 

where f * : C* -+ (C’)* denotes f with orientations on E and .E’ switched, and the 
superscript t indicates transposition. There now exists in the literature a variety of rigorous 
constructions of three-dimensional TQFTs. In this note we shall consider the constructions 
by Reshetikhin-Turaev [RT] and the one by Turaev-Viro [TV] and their generalizations 
(see [T,DJN,KS,BD]). These are all based on the algebraic structure of the representation 
theory of quantum groups with deformation parameter equal to a root of unity, and are 
known to be related to Chem-Simons theory with an arbitrary compact gauge group. 

In [BD] we have proven that for closed manifolds the invariant ZTV(M) of the 
Turaev-Viro construction equals the modulus squared of the invariant r(M) obtained by 
the Reshetikhin-Turaev construction for a general quantum group at primitive even roots 
of unity (see also [Wa,T,R]). The purpose of this paper is to extend this result to manifolds 
with boundary, i.e. to prove that 

ZTV(M) = r(M) C3 t(M*) 

for any 3-cobordism M. Here Zrv (M) and t (M) denote the cobordism invariants defined in 
[BD] and [T], respectively. In Section 2 we recall briefly the basic elements of the Turaev- 
Viro construction as developed in [BD] and refer the reader to that paper for fuller details. 
We then prove a basic lemma which yields certain isomorphisms from the state spaces of 
the theory onto certain explicitly realizable spaces. This result is used in Section 3 to obtain 
an equivalent TQFT for which the announced factorization property is then proven. 

2. ‘Ihraev-Viro TQFT 

In this section we briefly recall the formulation and basic properties of TQFT of the 
Turaev-Viro type (for more details see [BD]). The corresponding state sum will be denoted 
by Z(M) (omitting the index TV in the following). 
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Fig. 1. An oriented (i. j. k]-co!ored 2-simplex. 

Originally, the Turaev-Viro invariant was defined for a compact connected closed oriented 
3-manifold M as follows [TV]: Choose a triangulation of M and associate to each l-simplex 
of the triangulation an index (or a color) from a finite set Z of the so-called “good” irreducible 
representations of a quantum group. To each colored tetrahedron one then associates a 
6j-symbol, which is possible due to the invariance of 6j-symbols under the tetrahedral 
symmetry group. In addition, to each i-colored l-simplex one attaches a factor WY, which 
equals the quantum dimension of the corresponding representation, and to each vertex one 
attaches a factor o-*, where o* = Cicl ~4. 

The invariant Z(M) is then obtained as the sum over all colorings of the triangulation 
of the product of all factors associated to tetrahedra, edges and vertices. It can be shown 
(using the orthogonality and Biedenham-Elliott relations for 6j-symbols) that the resulting 
quantity is independent of the particular choice of triangulation. 

We have here assumed that the 6j-symbols are scalars, i.e. that the multiplicity of any 
representation i E Z in a tensor product of two representations in Z is always 0 or 1. which 
is the case for e.g. SU, (2). For more general quantum groups the 6j-symbols are tensors. 
In that case we associate to each oriented, colored triangle t with oriented boundary l- 
simplexes as indicated in Fig. 1 (where the orientation of the plane is assumed to be counter 
clockwise) the vector space V[ of Clebsch-Gordan coefficients defined by 

where Hi denotes the vector space of the representation i . 

The canonically dual vector space (VG)* = V: will be associated to the oppositely 
oriented triangle. For other configurations of arrows than that in Fig. 1 the corresponding 
spaces are defined by requiring that reversing an arrow on a l-simplex is equivalent to 
replacing its color by the dual one (i.e. replacing the corresponding representation by its 
adjoint). 

Moreover, the 6j-symbol associated to an oriented colored tetrahedron with oriented 
edges belongs to the tensor product of the vector spaces associated to the triangles in its 
boundary. Thus, we may define Z(M) by replacing above the product of 6j-symbols by 
the corresponding tensor product and contracting with respect to the dual pairs of spaces 
associated to triangles (with some fixed orientation of edges), and the result is again inde- 
pendent of the choice of triangulation as well as of the chosen orientation of edges. In fact, 
this definition is easily extended to non-closed, oriented manifolds M by simply contracting 
only with respect to dual pairs of spaces associated to interior triangles. One then obtains 
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a tensor Z’(M) in the vector space ViM defined as the direct sum over all colorings of the 
edges in 8 M of the tensor product of the spaces associated to the triangles in 8 M. This 
space, of course, depends on the triangulation of a M. However, any two such triangulations 
may be connected by a triangulation of the cylinder aM x [0, l] in the obvious way, and 
Z’(aM x [0, 11) defines a cylinder map between the corresponding spaces. In particular, 
choosing the same triangulation at the two ends of the cylinder the map becomes a projec- 
tion, and the supports of the projections so obtained may be canonically identified by the 
cylinder maps thus defining the vector space VIM, and at the same time the partition func- 
tions Z’(M) are also identified with a unique vector Z(M) E VIM fulfilling the required 
properties. 

Exploiting ideas of Turaev [Tu] an effective calculational tool was developed in [KS] 
by introducing colored graphs G, on the boundary of the manifold M and defining an 
associated state sum Z(M, G,) generalizing Z(M). Here a colored graph G is a closed - x 
one-dimensional simplicial complex, whose 0-simplexes have order at most 3 and whose 
lines (i.e. maximal sequences of 1-simplexes joined by vertices of order 2) are oriented 
and colored (by elements in z), the collection of colors being indicated by x. The graph is 
assumed to be embedded into aM such that over- and under-crossings are distinguished. 
The definition of Z(M, G,) proposed in [KS] has the following geometrical interpretation 
(see [BD]). One glues to-the boundary z of M a certain pseudo-manifold PC whose 
boundary consists partly of one copy of .X* (triangulated as JC) and partly of a surface on 
which the dual graph of G determines a cell decomposition into triangles (corresponding to 
3-vertices) and rectangles (corresponding to over- and under-crossings) and whose edges 
inherit a coloring from n. The state sum Z(M, G,) then equals Z(Mc,), where MC, is 
the resulting pseudo-manifold with coloring of boundary edges given by x. Actually,?he 
construction requires a slight modification in case rectangles are present in the boundary 
(see [BD]). Suffice here to mention that Z(M, GE) in all cases belongs to the tensor product 
of the vector spaces associated to the triangles dual to the 3-vertices in G, and is a homotopy 
invariant of the colored graph G, in ,?7. 

In case G is empty the pseud&manifold PC is the cone over z and the boundary of the 
resulting manifold degenerates to a point. On the other hand, if G is sufficiently “large” so 
that PC is homeomorphic to the cylinder t: x [0, 11, then MG, is homeomorphic to M, and 
if G in addition has no over- or under-crossings it follows that ex Z(M, G,) equals Z’(M) 
with aM triangulated by the dual graph to G. Such graphs were called canonical in [BD]. 

The gluing axiom described in the beginning of Section 1 can now be reformulated in 
the language of graphs as follows. If M is obtained by gluing Ml and M2 along JC, we have 

(2.1) 

for any canonical graph G, and where F is the gluing homeomorphism and GF denotes the 
image of G under F. 

The state sums Z( M, G,) satisfy a number of simple relations under certain elementary - 
changes of the graph GX, which together with (2.1) can be used to show that the dimension - 
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of Vzg, where .E, is a connected surface of genus g 2 1, is given by the square of the 
Verlinde formula: 

dim Vcg = tr idv, = trZ(X8 x I) = Z(C, x S’) = (trfi2(8-1))2, 

where G2 = c,(N”)2 and Na is the multiplicity matrix given by 

(2.2) 

(N% = N& = dim Vb”, 

fora, b, c E Z. 

(2.3) 

It is even possible to realize the space Vc, explicitly as follows. Consider a handlebody 
Mg of genus g standardly embedded in R3 with 8M, = C, and introduce two copies cL 
and cR of the graph depicted below such that they are deformation retracts of C in M, and 
such that they are disjoint (and not linked): 

I 2 g 
We choose the coordinates in R3 so that the cores cL and cR lie in the xv-planes and their 

z-components are equal to 1 and - 1, respectively. 
Clearly cL and cR then possess tubular neighborhoods that are disjoint and diffeomorphic 

to Mg and whose boundaries are homotopic to E:, in Mg. Removing two such tubular 
neighborhoods from MS yields a manifold n;i, with three boundary components C,, (Ck)* 
and (Cf)* all of genus g. We will call the part of Es” (resp. Ef> where z > 1 (resp. L > - 1) 
the upper side and the other part where z < 1 (resp. z < - 1) the back side of Ck (resp. C:). 

Next, we embed a copy GL of the graph (2.4) on the upper side of Ck in such a way that 
the graph is homotopic to the core cL. Analogously, we embed a second copy GR of the 
graph (2.4) on the back side of _EF. 

Finally, we make GL lefthanded and GR righthanded, i.e. we introduce meridians on each 
of the tubes corresponding to the lines of cL, resp. cR, which under-cross, resp. over-cross, 
the lines of GL on _Ek, resp. GR on .E:. We then define 

R-3 & ,2, 

KC&f = c n ~~Z(M,,GL~m~~G~~m~~GR), 
5.Y i=l o w 

e _ I_ 
- 

(2.5) 

where e, resp. f, is a coloring of GL, resp. G - R. The sum is over colorings x = {Xi],‘:;’ 

and y = {Yi}yzT” of the meridians rnL and mR, 
somecanonical graph on Eg. 

on Ck and Ci, respectively, and GR is 

We denote by Vk, resp. Vf, the vector space associated to GL, resp. GR, regarded as 
embedded into Ek, resp. Cf, i.e. 

vg” = ($-j V&9, 
e 

(2.6) 
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where V:(g) is the tensor product of vector spaces associated to the colored 3-vertices of 
GL taking into account the orientation of ,ITk and similarly for GR. Then 

dim Vk = dim Vg” = tr(J?2)(8-1’ (2.7) 

by a simple counting, and hence 

dim( V,” C3 Vg”) = dim Vzs. (2.8) 

Moreover, with the chosen orientation convention we have (see [BD]) K,,f E V,“(g)* @ - 
V,“(f)* @ VEX and hence (2.5) defines an operator 

K g, f : V,L(d @ V&Q) + vc, - 

in an obvious way. We intend to show that the direct sum over e, f of these operators yields 
an isomorphism between Vk 60 Vf and Vzs. This was proven f& the case g = 1 in [BD]. 
In the general case it is a consequence of Lemma 1 in which, however, we have found it 
convenient first to rewrite Kc,f, up to a factor e?-g+t), as - 

(2.9) 

where A4; is the manifold with boundary components Eg and Ei* obtained by removing 
one tubular neighborhood instead of two as above and G,,f is the colored graph on .Ei 
indicated in the figure below together with a system m of meridians (of which there are 
3g - 3 for g > 1, and 1 for g = l), and Gg is as above. Note that the f- colored component 
of Ge, f is supposed to lie on the back side of C’g. -- 

ml m2 m3 

: -* 

. . . 

m4 
(2.10) 

The equivalence of (2.5) and (2.9) follows by merging _BZk and J!T: as in the proof of 
Lemma 4.4(ii) in [BD]; see also the proof of Lemma 1, where the same technique is used. 
We shall henceforth take (2.9) as the definition of Kc,f. 

We now introduce an operator 

L g, f : VZ8 + V,L(e) c4 q(f) c vg” 8 vg” - 
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as a mirror image of Kg,f w.r.t. a plane parallel to the z-axis and not intersecting the 
handlebody Ms. More precisely, 

3g-3 m2, 

%.f = c I-I 2 Z(Ml, G,,f U rn: U @), _ - 
x i=l 

(2.11) 

where Mi is the mirror image of ML and aMi = Xi U .Ei. The graphs G,,f E Ci* and 

- Gg E Xi are the mirror images of G,,f E Ci and G, E C,, respectively. 

Gluing (MI,, Ge,f U mx) and (Mi< G,,, f - I U m{,) along C, we obtain (Ng, Gr,f U _ - 
m,, - $,,, U rnb) where Ng is diffeomorphic to Zi x [O. 1 ] with boundary _Zi U CL*. 
The graph Gel,fl U rn; E E( can be obtained from the standard graph G,,f U m, E Ci 

depicted in (2.10) by changing the colorings e -+ e’, f -+ f’, x + 3 and-replacing all 
over-crossings by under-crossings and vice versa. 

Eq. (2.1) implies that 

2 2 

L e’.f 
,K,,f = c,--,““‘o* 

- - 
x’y i 02 w2 

z(Ng, G,,f U mx U G,l.y u m>). 
- - _ 

(2.12) 

We are now in position to state the announced lemma. 

Lemma 1. The operator L,,,ft K,,f : V:(g) 63 V:(f) -+ Vk(g’) 63 Vg”<f’) satisjies - - 

(2.13) 

where we have introduced the notation we = l-f!T’ WQ and 6g,,t = _ l-f!;’ bi .E!;. 

Proo$ The idea of the argument is the following. By introducing tubes between Ci and 
.?I: we step by step lift the lines of Gi, f E Xi to Ci and cut the handles traversed by these 

lines. Applying the technique developed in [BD,KS] we will arrive at (2.13). 
Due to Lemma 3.3 in [BD] introduction of a tube with an u-colored meridian (which is 

not normalized by ww2) does not change the state sum. Pictorially this looks as shown in 

Fig. 2. A part of the manifold Ng where the boundary component C: of the tube is connected to Ct by a 
tube with an a-colored meridian on it. 
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Fig. 2, where we do not draw the c-, f - and e’-, f’-colored lines. Applying Lemma 4.2 
(ii) of [BD] (or the Wigner-Eckart type relation (x15) in [KS]) to the meridians ml, m’, 
and a we can change the graph so that the handle (ABC) x I will be traversed by a single 
line only. According to Remark 3.6 in [BD] the color of this line can be set to zero and the 
handle cut. This yields a manifold Nj as depicted in Fig.3. 

Using Lemma 4.2(ii) in [BD] once more (see also Example 58(iii) in [KS]) one can cut 
the handle traversed by e;- , el- , $- and ft-colored lines. After that the state sum of the 
resulting (g - 1)-cylinder becomes multiplied by “&20f,2”e;e, Af;frf,. 

Continuing this procedure analogously we obtain the desired result: 

L el ffK,g = w- 2g+2 &,/6f f’ Cm; @;)-I 1 V,L(g)@VVgR(f). - -- - 

Defining the operators K : Vk 8 Vf + Vxg and L : VC, --+ I$@ V: by 

0 

K = tog-’ @~+K<.f, 
e9.f - - 

L = cog-l @ wp&, f, - 
e*f - - 

it follows from (2.13) that LK = 1 v;,a,v; and hence by (2.8) K 

and 
and L are isomorphisms 

L = K-‘. (2.14) 

Although we shall strictly speaking not use them in the following, let us introduce the 
left- and right-handed counterparts Kb and Kf” of Kc,f by replacing in Eq. (2.9) the graph - - 
G,,f by its left- and right-handed parts GL and GS, respectively, and similarly Lb and L% e 
by replacing G,,f in Eq. (2.11) by GL and “2, respectively. The proof of Lemma 1 then - e 
yields 

w2g-2 0 0 I LLKL = 6 e e g g’ e,e 11 
V,“(e) 

ml 
w 

_4::, 

r; 
e; f; 

” I, ,, 
:: :: 4 
:: ;: 

.. j /_:__; .~ 
: : : : :: 
:: :: 
:: :: 
I: ;: 
:: ;: ,, 

Fig. 3. A part of the manifold Ni with associated graph on it. 
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and 

w2g-2,f,ft L”fK;, = “f,fdv~c~, 
-- - -- 

and consequently 

LLKL = 1 $3 LRKR = 1 V,“? 

where KL : Vg” + VC, and LL : VC, + Vg” are defined by 

KL = cog-l @ w,K,L, LL = Cog-I @ o&L,L, 
e e 

and similarly for KR : VgR + V,Q and LR : Vcg -+ VgR. 

(2.15) 

3. Factorization of state sums 

For each genus g > 0, we fix once and for all manifolds MI: and Mi as defined in 
Section 2 with aMi = C, U EL* and aMi = Eg* U 22: , where .Eg, .!CL and Ei are fixed 

oriented surfaces of genus g, and fixed graphs Gt f and Gf f are embedded in Ej and 
-‘_ -‘_ 

c C*, respectively, together with the associated sets of meridians. We have here made the 
dependence of the graphs and meridians on the genus explicit, and will do so likewise for 
the associated operators Kc, f , L, f , etc. 

By a parametrized surface of g&us g we mean a pair (E, c$), where .E is a compact, 
connected, oriented surface of genus g and C#J : .E + E, is a diffeomorphism. We call 4 a 
parametrization of L: and set 

Let us consider a three-dimensional cobordism M whose boundary a M = E; U 222 consists 
of two compact, connected, oriented surfaces of genus gt and g2, respectively, which are 
parametrized by $11 and $2. An operator if(M) : vc, (41) + VI;*(&) can be defined as 
follows: 

%W = L(4dZ(M)K(&), 

where 

K(h) = U(+,)-lKgl, U42) = Lg2uGP2) 

and U (#J) : V,Y + Vz8 satisfying (1.2). 
More generally, given a compact, oriented cobordism M with boundary components 

Cd, *, . . . , t=gmm*, zg”m++t ) . . . , .Ein and parametrization & of Eji we set 

g(M) = U&+1, . . . 9 #dZ(M)K(h,. . . . An>. (3.1) 
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where 

i=l 

andL(&,..., &) is defined analogously. 
Equivalently, (3.1) can be expressed as follows. Let fi denote the manifold obtained by 

gluing I$ onto M along 4i for 1 5 i 5 m, and gluing Mi. onto M along #i in case i > m. 
Then, clearly, II? is diffeomorphic to M and has boundary components (Zk, )*, . . . , ( Eirn >*, 

-qm+, 9 . . ., Ein with embedded graphs Gf: f, , . . . , G$,L,,, , GE:::,L,,,+, , . . . , C?ii,sn, re- 
- ‘_ - 

spectively. With the notation 2 = @‘, . . . , g”) and wp = fly==, oei we then have - 

z(M) = @@ML (3.2) 
P,J 

where the colored state sum z,,JM) is defined by 

(3.3) 

where 

GZ,f = Gfi f, U.. . U c?::,~ and Mi = rni, U.. . U m’&. _ - - 

Finally, we define an isomorphism o(f) : v_z(r$) -+ pp(#‘> by 

O(f) = L(#‘)V(f)K(@) (3.4) 

for any orientation preserving diffeomorphism f : .Z + 22’ between parametrized surfaces 
(.Z, $I) and (I?, 4’) of genus g. This definition is extended in an obvious way to orientation 
preserving diffeomorphisms between arbitrary compact, oriented surfaces in terms of tensor 
products. 

The objects ?, 0, 2 define a TQFT on compact, oriented 3-manifolds with parametrized 
boundary. This can be easily verified using the definition of these objects and Eq. (2.14). The 
TQFT based on c, 0 and 2 is equivalent to the theory defined in Section 2. The equivalence 
is given by the K- and L-operators (see [T] or [DJ]). 

We are now ready to state and prove the main result of this paper. 

Theorem 2. Let M be a compact, oriented 3-manifold. For any coloring (Z, f) as dejined 
above we have 

g,,i(M) = G(M) @T~J(M*), (3.5) 

where the invariant t; isgiven by Eq. (3.8) below and coincides with the invariant introduced 
in [T] up to normalization. 

Pro05 As remarked earlier, we can replace each tube in fi defined above with graph 
Gij f’ Umii by two tubes with graphs (Gz$)L U (mii)L and (Gyi)R U (mki)R, respectively, 

_._ - - 
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at the cost of a factor w*(si-l). Let us assume we have done so for each i = 1, . . . . n and 
denote the resulting manifold also by M. As is well known, the closed manifold obtained 
from A? by filling all 2n tubes has a representation by surgery on S3 along a link L with 
components 11, . . . . 1~ which, of course, may be assumed not to intersect the filled tubes. 
Using Lemma 1 for the case g = 1 as in the proof of Theorem 5.2 in [BD] one obtains 

Z(M, Gf: f, Um;,U...UG$JJm:.) 
- 

= w2(gl +..,+g, -n-N) 
c-,- - CO; w; (&6?) (W@Y) 

(i.Z.6,? 

x Z(s3. Lk U (M;)L U L; U (M;,)R U G; U M; U G; U M;,, 

where we have introduced the shorthand notation 

(3.6) 

I$ = (Gg’)L u . , . I., (@;)L, e e’ 

and similarly for the right-handed part and the meridians. Furthermore, s3 denotes the 
manifold obtained from S3 (without 2n filled tubes) by removing two disjoint tubular 
neighborhoods Z’iL and TiR for each i = 1, . . . , N. We define qL and qR by splitting a tubular 
neighborhood of fi into two nearby ones as was done previously for the graphs Gsr , . . . , Gsn . 
Finally, CL = L\ U. . . U Lh (together with associated meridians ML = rnk U. . . U mh) is 
a collection of left-handed graphs on the boundary components 8 Tf , . . . , a Tb of s3. where 
the graphs are determined by the surgery prescription, and similarly for CR and MR. 

Next we recall from [BD] (see also [KS]) that two tubes with left- and right-handed lines, 
respectively, have trivial braiding, i.e. they may be deformed through each other. Using this 
and the fact that s3 is a 3-sphere with a collection of 2(n + N) tubes removed, together with 
the factorization property of Z(M, G) w.r.t. connected sums (see Lemma 3.2 in [BD]), we 
obtain by substituting (3.6) into (3.3) that 

Z_ _(M) = &s~+~~.+sn-n-N+r) 
e.“f c Z(S3, c; u Gk, 8 Z(S3, c; u q,. (3.7) 

li.s 

where we have introduced 

Z(S3, Lt;- u $-) = gg,+l+...+g,--(n-“)W~W~ ~(of/02N) l-pp2, 
_ _ ;.x i.j 

x Z((s3)L, C; U (M;)L u @ u Mb) 

and 

x Z((S3)R, LB U (M;,)R U “j” U M;), 

where (s3)L is defined in analogy with s3 except that only tubes with left-handed graphs 
or links are removed from S3 and (S3)R is defined similarly. 
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Finally, setting 

AL = cq,2w,4, 
CG 

we define 

r,(M) = ogl+...+g”-n-N+l (ALw-‘)“(L) c 2((S3)5 c; u G,“), (3.8) 
ci 

where o (_C) is the signature of a certain 4-manifold whose boundary is M with tubes filled 
in. Similarly, the right-handed counterpart r; is defined with AR given by the same formula 

as AL except that qc should be replaced by 4;‘. Then 

ALAR = w2 

(see [T]) and hence (3.7) can be rewritten as 

Z,-,J(M) = r,(M) @ t?(M). 

By arguments identical to those in [BD] one shows that 

r?(M) = tf(M*) 

thus proving (3.5). Likewise the argument that rz(A4) equals the ribbon graph invariant 
introduced in [T] follows as in [BD] by projecting the tubes in (s3)L with graphs and links 
onto a plane. 0 

4. Concluding remarks 

The proof of Theorem 2 can be extended in a straightforward manner to the case where 
punctures are introduced on the boundary components of M. We shall, however, not elab- 
orate on that case here (see also [T]). 

It should be mentioned that the equivalence of the TQFT defined in Section 2 and the 
one defined in terms of c, 0, 2 follows from the equality of the corresponding state sums 
of closed manifolds, shown in [BD,T], once it is known that the two theories are non- 
degenerate (see e.g. [T]). The method of this paper gives the equivalence explicitly and at 
the same time prepares the ground for the proof of (3.5). 
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